Assessment of the Several Structures Proposed for Tourmaline

By M. J. Buerger, Charles W. Burnham and Donald R. Peacor
Crystallographic Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

(Received 19 July 1961)

Abstract

Different versions for the structure of tourmaline have been proposed by the Buerger, Ito and Belov schools. In order to settle the confused status of this important structure, an attempt was made to refine each model independently. For this purpose new intensity data were obtained from a crystal of the De Kalb, N.Y., material, which was ground to a small sphere in order to permit applying a simple and accurate correction for absorption. The intensities were measured with a single-crystal counter diffractometer. Starting with the coordinates for the several models, each was refined by least squares. The coordinates of the Buerger and Ito models converged to identical values, with $R(h k l)=6.9 \%$.

In at least the tourmaline used for the intensity data, the Mg atoms occupy the central region of the octahedral sheet, and the tourmaline 'units' are knitted together by Al octahedra in spite of a great flexibility of replacement of octahedral sites. The alkali atom appears to be partly bonded to a girdle of saturated oxygen atoms which are part of the hexagonal ring of Si tetrahedra. This is reflected in an increase in the distances of these oxygen atoms from Si by $0.03 \AA$.

Introduction

Three more or less related structures have been proposed for tourmaline by Hamburger \& Buerger (1948), Belov \& Belova (1949, 1950) and Ito \& Sadanaga (1951). Up to the present time no serious effort has been made to test the relative merits of these structures. As a result, the true structure of tourmaline is in doubt, and it has even been suggested that tourmaline is polymorphous (Donnay, Wyart \& Sabatier, 1959), some tourmaline having the structure of the Buerger school, other tourmaline the structure of the Ito school. Since such confusion is intolerable, this investigation was instituted.

The Buerger and Ito structures are basically the same. They differ chiefly in minor variations of atomic coordinates which do not affect the fundamental bonding pattern. These structures are characterized by a hexagonal ring of Si tetrahedra which has the general shape of a hexagonal fragment isolated from a phyllosilicate sheet. The Mg atoms are in octahedral coordination and the octahedra share edges to form a trigonal fragment of a brucite-like layer. Six oxygen atoms of the lower part of this layer are also the apices of the hexagonal ring of Si tetrahedra. The trigonal nucleus of Mg octahedra is extended by six Al octahedra through edge sharing. Each of the B atoms is in triangular coordination, linked to the vertices of the octahedra of this layer.

The Belov structure does not have the same bonding pattern. It is based upon a double hexagonal ring of general formula $A_{12} \mathrm{O}_{30}$, somewhat similar to the $\mathrm{Si}_{12} \mathrm{O}_{30}$ ring in milarite. In the Belov tourmaline structure, the tetrahedra of one ring contain 6 Si , the other a mixture of $3 \mathrm{Al}+3 \mathrm{~B}$. These double rings are held together in columns along the c axis by Na
atoms, and the columns are bonded together by Mg atoms in octahedra which spiral up the 3 -fold screw axis by sharing edges. The Buerger and Ito structures are based upon 31 oxygen atoms per cell; the Belov structure is based upon 30 .

A necessary condition that a structure be essentially correct is that by minor adjustments of the coordinates of its atoms, the computed amplitudes can be brought into good agreement with the observed amplitudes. The three proposed structures of tourmaline can be subjected to this test, specifically by attempting to refine each by the method of least squares. To this end a set of excellent intensities is needed.

Experimental procedure

Entirely new intensity measurements were made using a single-crystal counter diffractometer (Buerger, 1960, p. 119). The intensities were gathered from tourmaline from de Kalb, New York. This was chosen because it is almost free of Fe, and because it has an otherwise comparatively simple composition. This material was taken from the same lot which was used by Hamburger \& Buerger (1948) in their original determination.

The symmetry of tourmaline is $R 3 m$. New values for the edges of the hexagonal cell of the de Kalb tourmaline are $a=15.951 \pm 0.001, c=7.24 \pm 0.01 \AA$. By combining the published chemical analyses, density and precision cell data, the composition of a primitive cell for this tourmaline can be expressed as

$$
\quad \underset{\mathrm{Na}_{0.39} \mathrm{~K}_{0.01} \mathrm{Ca}_{0.60} \mathrm{~B}_{3.00} \mathrm{Mg}_{3.55} \mathrm{Fe}_{0.03}}{\mathrm{Al}_{5.58} \mathrm{Si}_{5.58} \mathrm{O}_{30.61} \mathrm{~F}_{0.49} \mathrm{H}_{3.00} .}
$$

A number of crystal fragments were tested for perfection by examining their single-crystal diffraction
patterns, and the most perfect were ground into spheres and oriented. The one finally used for intensity measurement had a radius of $R=0.00625 \mathrm{~cm}$. The linear absorption coefficient for this tourmaline is $103 \mathrm{~cm} .^{-1}$, so that $\mu R=0.644$.

The single-crystal diffractometer employed a Geiger tube as detector; strong reflections were reduced by aluminum absorbers so that the linearity range was not exceeded. Any errors in calibrating the absorbers were minimized by the use of different scale factors for reflections measured under different absorber conditions. The intensities were measured by digital counting, due allowance being made for background on both sides of a peak. There are about 440 reflections in the asymmetric unit within the accessible sphere. Of these, 375 were within the recording range of the apparatus, and their intensities were measured with copper radiation. They were corrected for Lorentz, polarization and absorption factors.

Refinement of the Buerger and Ito structures

The Buerger and Ito structures, while very similar, are described by their authors in different ways. To transform either to the other, it is necessary to rotate it through π about the a_{3} axis of the hexagonal cell and displace it parallel to c. In transforming coordinates from one to the other, therefore, it is necessary
to interchange x and y, reverse the sign of z, and then add a constant to z. We have arbitrarily chosen to transform the Buerger to the Ito coordinates for purposes of comparing the structures. The original coordinates of Al and O_{8} of the Buerger structure were transformed by symmetry operations in such a way that all coordinates now refer to atoms within a small asymmetric unit bounded by adjacent mirrors and intersecting in a screw axis (see Fig. 3, beyond). This places all atoms in the same cell and as near as possible to the 3 -fold axis through the origin.

Since the origin along the c axis is not symmetry fixed, it can be chosen arbitrarily. The same origin was chosen for all three structures by keeping the z coordinates of Si constant throughout the refinements. The initial coordinates of the Ito structure and the transformed coordinates of the Buerger structure are listed in Tables 1 and 2 for comparison.

The composition of the de Kalb tourmaline, noted in an earlier section, fits neatly into the Buerger and Ito structures according to the following scheme:

Table 1. Results of refining the Ito tourmaline structure
(Old coordinates above, new below: Buerger designation left, Ito right)

Equi-point	Atom	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	B
$3 a$	Na, Ca	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0.961 \\ & 0.8576 \end{aligned}$	0.0010	$0 \cdot 688$
	$\mathrm{O}_{1}=\mathrm{OH}_{2}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0.331 \\ & 0.3117 \end{aligned}$	0.0022	-0.678
$9 b$	$\mathrm{O}_{2}=\mathrm{O}_{\mathrm{V}}$	$\begin{aligned} & 0 \cdot 110 \\ & 0 \cdot 1218 \end{aligned}$	0.0010	$\begin{aligned} & 0.055 \\ & 0.0609 \end{aligned}$	$0 \cdot 0005$	$\begin{aligned} & 0.621 \\ & 0.6113 \end{aligned}$	0.0013	$0 \cdot 378$
	$\mathrm{O}_{4}=\mathrm{O}_{1 \mathrm{II}}$	$\begin{aligned} & 0 \cdot 188 \\ & 0 \cdot 1870 \end{aligned}$	0.0010	$\begin{aligned} & 0.094 \\ & 0.0935 \end{aligned}$	$0 \cdot 0005$	$\begin{aligned} & 0.011 \\ & 0.0176 \end{aligned}$	0.0014	$0 \cdot 526$
	B	$\begin{aligned} & 0 \cdot 208 \\ & 0 \cdot 2206 \end{aligned}$	0.0015	$\begin{aligned} & 0 \cdot 104 \\ & 0 \cdot 1103 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0.641 \\ & 0.6362 \end{aligned}$	0.0020	-0.228
	$\mathrm{Mg}=\mathrm{Li}, \mathrm{Al}$	$\begin{aligned} & 0.063 \\ & 0.0635 \end{aligned}$	$0 \cdot 0002$	$\begin{aligned} & 0.125 \\ & 0.1270 \end{aligned}$	0.0005	$\begin{aligned} & 0.471 \\ & 0.4618 \end{aligned}$	0.0007	$0 \cdot 327$
	$\mathrm{O}_{5}=\mathrm{O}_{\text {III }}$	$\begin{aligned} & 0.094 \\ & 0.0906 \end{aligned}$	0.0005	$\begin{aligned} & 0.188 \\ & 0.1812 \end{aligned}$	0.0010	$\begin{aligned} & 0.011 \\ & 0.0012 \end{aligned}$	0.0012	-0.040
	$\mathrm{O}_{3}=\mathrm{OH}_{\text {II }}$	$\begin{aligned} & 0 \cdot 125 \\ & 0 \cdot 1340 \end{aligned}$	$0 \cdot 0005$	$\begin{aligned} & 0.250 \\ & 0.2680 \end{aligned}$	$0 \cdot 0010$	$\begin{aligned} & 0.621 \\ & 0.5755 \end{aligned}$	0.0014	0.548
$18 c$	Si	$\begin{aligned} & 0 \cdot 188 \\ & 0 \cdot 1898 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0 \cdot 188 \\ & 0 \cdot 1922 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0.090 \\ & 0.0900 \end{aligned}$	fixed z	$0 \cdot 201$
	Al	$\begin{aligned} & 0 \cdot 270 \\ & 0 \cdot 2615 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0 \cdot 297 \\ & 0 \cdot 2976 \end{aligned}$	0.0003	$\begin{aligned} & 0.491 \\ & 0.4762 \end{aligned}$	$0 \cdot 0006$	$0 \cdot 167$
	$\mathrm{O}_{7}=\mathrm{O}_{\mathrm{I}}$	$\begin{aligned} & 0 \cdot 280 \\ & 0 \cdot 2851 \end{aligned}$	0.0006	$\begin{aligned} & 0 \cdot 280 \\ & 0 \cdot 2844 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0.011 \\ & 0.0090 \end{aligned}$	0.0010	0.301
	$\mathrm{O}_{6}=\mathrm{O}_{\mathrm{IV}}$	$\begin{aligned} & 0 \cdot 188 \\ & 0 \cdot 1866 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0 \cdot 188 \\ & 0 \cdot 1952 \end{aligned}$	0.0006	$\begin{aligned} & 0.331 \\ & 0.3111 \end{aligned}$	0.0009	$0 \cdot 178$
	$\mathrm{O}_{8}=\mathrm{O}_{\mathrm{VI}}$	$\begin{aligned} & 0 \cdot 261 \\ & 0 \cdot 2698 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0 \cdot 210 \\ & 0 \cdot 2085 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0.651 \\ & 0.6455 \end{aligned}$	$0 \cdot 0011$	$0 \cdot 694$

Table 2. Results of refining the Buerger tourmaline structure
(Old coordinates above, new below: Buerger designations left, Ito right)

Equi-point	Atom	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	B
$3 a$	Na, Ca	0		0		$0 \cdot 826$		
		0	-	0	-	0.8576	$0 \cdot 0010$	$0 \cdot 688$
	$\mathrm{O}_{1}=\mathrm{OH}_{\mathrm{I}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0.297 \\ & 0.3117 \end{aligned}$	$0 \cdot 0022$	-0.678
$9 b$	$\mathrm{O}_{2}=\mathrm{O}_{\mathrm{V}}$	$\begin{aligned} & 0 \cdot 116 \\ & 0 \cdot 1218 \end{aligned}$	0.0010	$\begin{aligned} & 0.058 \\ & 0.0609 \end{aligned}$	0.0005	$\begin{aligned} & 0.612 \\ & 0.6113 \end{aligned}$	$0 \cdot 0013$	$0 \cdot 378$
	$\mathrm{O}_{4}=\mathrm{O}_{\text {II }}$	$\begin{aligned} & 0 \cdot 192 \\ & 0 \cdot 1870 \end{aligned}$	0.0010	$\begin{aligned} & 0.096 \\ & 0.0935 \end{aligned}$	0.0005	$\begin{aligned} & 0.019 \\ & 0.0176 \end{aligned}$	$0 \cdot 0014$	0.526
	B	$\begin{aligned} & 0.234 \\ & 0 \cdot 2206 \end{aligned}$	0.0015	$\begin{aligned} & 0 \cdot 117 \\ & 0 \cdot 1103 \end{aligned}$	$0 \cdot 0008$	$\begin{aligned} & 0.612 \\ & 0.6362 \end{aligned}$	$0 \cdot 0020$	$-0 \cdot 229$
	$\mathrm{Mg}=\mathrm{Li}, \mathrm{Al}$	$\begin{aligned} & 0 \cdot 067 \\ & 0 \cdot 0635 \end{aligned}$	$0 \cdot 0002$	$\begin{aligned} & 0 \cdot 134 \\ & 0 \cdot 1270 \end{aligned}$	0.0004	$\begin{aligned} & 0.458 \\ & 0.4618 \end{aligned}$	$0 \cdot 0007$	$0 \cdot 327$
	$\mathrm{O}_{5}=\mathrm{O}_{\text {III }}$	$\begin{aligned} & 0.080 \\ & 0.0906 \end{aligned}$	0.0004	$\begin{aligned} & 0 \cdot 160 \\ & 0 \cdot 1812 \end{aligned}$	$0 \cdot 0008$	$\begin{aligned} & 0.090 \\ & 0.0012 \end{aligned}$	0.0012	-0.040
	$\mathrm{O}_{3}=\mathrm{OH}_{\text {II }}$	$\begin{aligned} & 0 \cdot 117 \\ & 0 \cdot 1340 \end{aligned}$	0.0005	$\begin{aligned} & 0 \cdot 234 \\ & 0 \cdot 2680 \end{aligned}$	0.0010	$\begin{aligned} & 0.674 \\ & 0.5755 \end{aligned}$	0.0014	0.548
$18 c$	Si	$\begin{aligned} & 0 \cdot 192 \\ & 0 \cdot 1898 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0 \cdot 192 \\ & 0 \cdot 1922 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0.090 \\ & 0.0900 \end{aligned}$	fixed z	$0 \cdot 201$
	Al	$\begin{aligned} & 0 \cdot 269 \\ & 0 \cdot 2615 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0 \cdot 302 \\ & 0 \cdot 2976 \end{aligned}$	$0 \cdot 0003$	$\begin{aligned} & 0.445 \\ & 0.4762 \end{aligned}$	0.0006	$0 \cdot 167$
	$\mathrm{O}_{7}=\mathrm{O}_{\mathrm{I}}$	$\begin{aligned} & 0.255 \\ & 0 \cdot 2851 \end{aligned}$	$0 \cdot 0006$	$\begin{aligned} & 0 \cdot 275 \\ & 0 \cdot 2844 \end{aligned}$	0.0007	$\begin{gathered} -0.059 \\ 0.0090 \end{gathered}$	0.0010	0.301
	$\mathrm{O}_{6}=\mathrm{O}_{\text {IV }}$	$\begin{aligned} & 0 \cdot 196 \\ & 0 \cdot 1866 \end{aligned}$	0.0007	$\begin{aligned} & 0 \cdot 196 \\ & 0 \cdot 1952 \end{aligned}$	$0 \cdot 0006$	$\begin{aligned} & 0 \cdot 297 \\ & 0 \cdot 3111 \end{aligned}$	$0 \cdot 0009$	$0 \cdot 178$
	$\mathrm{O}_{8}=\mathrm{O}_{\mathrm{VI}}$	$\begin{aligned} & 0 \cdot 286 \\ & 0 \cdot 2698 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0 \cdot 236 \\ & 0 \cdot 2085 \end{aligned}$	$0 \cdot 0007$	$\begin{aligned} & 0 \cdot 612 \\ & 0 \cdot 6455 \end{aligned}$	0.0011	$0 \cdot 694$

The composition of the cell evidently requires 3 I oxygen atoms.

For refinement purposes, the atomic scattering factor for each atom site was computed from the appropriate average of the half-ionized atoms in the formula for that site. Refinement of the structures was started with reasonable individual isotropic temperature factors, namely,

$$
B_{\mathrm{Si}}=B_{\mathrm{Al}}=B_{\mathrm{Mg}}=B_{\mathrm{B}}=0.2 ; \quad B_{\mathrm{O}}=0.4 ; \quad B_{\mathrm{Na}}=0.5
$$

Before refining the Ito structure, its value of R was 31%. After two cycles of least-squares refinement, the R was 26%. Since this value of R appeared rather high, it seemed wise to check the structure for possible gross errors in atom location. Accordingly a threedimensional Fourier synthesis $\varrho(x y z)$, based upon the coordinates resulting from the second cycle, was prepared. This showed that all atoms were in approximately their correct locations except for Na and OH_{r}. The peak shapes for these atoms required fairly large adjustments in z.

After making this adjustment, the structure was refined by 18 more least-squares cycles using the Busing \& Levy (1960) program for the IBM 704 computer. Cycles 3 through 7 reduced $R(h k l)$ to $8 \cdot 3 \%$. From this point on, the fixed temperature factors were replaced by variable isotropic temperature factors,
except in cycles 11 , and 14 through 18, in which temperature factors were held constant and coordinates and scale factors alone allowed to vary. During the cycles in the middle of the sequence anisotropic temperature factors were used, but these did not improve R, and the final cycles were made with individual but isotropic temperature factors. The final value of $R(h k l)$ for 20 cycles was 6.9%. The initial and final coordinates, along with their standard deviations, are given in Table 1.

The initial value of R for the Buerger structure was 35%. Ten cycles of least-squares refinement reduced R to 21%. At this point a three-dimensional difference synthesis, $\Delta \varrho(x y z)$, was computed; this showed comparatively random background except in the neighborhood of O_{5} and O_{3} where anomalies calling for obvious displacement were noted. When these coordinate changes were made, the R was immediately improved to $11 \cdot 6 \%$, and after two more cycles was reduced to 6.9%. After 3 more cycles with arbitrary B 's, and 7 more with variable isotropic B 's (in certain of which the B 's previously found were fixed but coordinates and scale factors alone allowed to vary) the refinement had converged, although the final value of $R(h k l)$ was still 6.9%.

The initial and final coordinates, along with their standard deviations, are given in Table 2. The final coordinates, with their standard deviations, and the
refined values of the isotropic temperature factors, are identical with those of Table 1, obtained in the refinement of the Ito structure.

The final set of temperature factors contains three having negative values, namely those for $\mathrm{B}, \mathrm{O}_{1}$ and O_{5}. Another cycle of refinement was run with the boron treated as un-ionized and these oxygens as fully ionized. This had an almost unappreciable effect on the coordinates and temperature factors.

Attempt to refine the Belov structure

The Belov structure has the same general placement of oxygen atoms as the Buerger structure except that, as noted, there is an additional oxygen atom in the Buerger structure (which is required to provide the common oxygen atom of the three Mg octahedra in
the central part of the layer). Indeed, oxygen atoms of the Belov structure have been labelled the same as oxygen atoms of similar coordinates in the Buerger structure, except for a small difference in the arbitrary origin of z. It may accordingly be assumed that the Belov structure was derived from the Buerger structure by utilizing nearly the same oxygen set and displacing the metals of the BO_{3} triangles and Mg octahedra layer so that they occupy tetrahedral voids between oxygens. (In addition, the Mg and Al are also interchanged.)

Because of this similarity, it is convenient to transform the Belov structure to the Ito orientation in order to compare the course of the refinements. In effect this brings the Si layer into correspondence in all three structures.

Table 3. Belov's structure for tourmaline before and after refinement
(Ito's orientation)

Equi-point	Atom	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	
$3 a$	Na	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 0.839 \\ & 0.8537 \end{aligned}$	$0 \cdot 0041$	
$9 b$	$\mathrm{O}_{\text {II }}$	$\begin{aligned} & 0 \cdot 107 \\ & 0 \cdot 1260 \end{aligned}$	$0 \cdot 0040$	$\begin{aligned} & 0.054 \\ & 0.0630 \end{aligned}$	$0 \cdot 0020$	$\begin{aligned} & 0.579 \\ & 0.6212 \end{aligned}$	0.0055	
	$\mathrm{O}_{\text {III }}$	$\begin{aligned} & 0 \cdot 122 \\ & 0 \cdot 1382 \end{aligned}$	$0 \cdot 0022$	$\begin{aligned} & 0 \cdot 243 \\ & 0 \cdot 2764 \end{aligned}$	0.0044	$\begin{aligned} & 0 \cdot 629 \\ & 0 \cdot 5889 \end{aligned}$	$0 \cdot 0059$	
	$\mathrm{O}_{\text {IV }}$	$\begin{aligned} & 0.073 \\ & 0.0915 \end{aligned}$	$0 \cdot 0022$	$\begin{aligned} & 0 \cdot 146 \\ & 0 \cdot 1830 \end{aligned}$	0.0044	$\begin{gathered} 0.004 \\ -0.0058 \end{gathered}$	$0 \cdot 0054$	
	O_{V}	$\begin{aligned} & 0 \cdot 204 \\ & 0 \cdot 1836 \end{aligned}$	$0 \cdot 0044$	$\begin{aligned} & 0 \cdot 102 \\ & 0 \cdot 0918 \end{aligned}$	0.0022	$\begin{array}{r} -0.011 \\ 0.0216 \end{array}$	0.0053	
$18 c$	Mg	$\begin{aligned} & 0 \cdot 056 \\ & 0.0369 \end{aligned}$	0.0013	$\begin{aligned} & 0 \cdot 314 \\ & 0 \cdot 296 \cong \end{aligned}$	0.0013	$\begin{aligned} & 0 \cdot 494 \\ & 0 \cdot 4859 \end{aligned}$	$0 \cdot 0026$	
	$(\mathrm{B}+\mathrm{Al})$	$\begin{aligned} & 0 \cdot 158 \\ & 0 \cdot 1559 \end{aligned}$	$0 \cdot 0019$	$\begin{aligned} & 0 \cdot 176 \\ & 0 \cdot 1735 \end{aligned}$	$0 \cdot 0019$	$\begin{aligned} & 0 \cdot 524 \\ & 0 \cdot 4865 \end{aligned}$	0.0031	
	Si	$\begin{aligned} & 0 \cdot 192 \\ & 0 \cdot 1899 \end{aligned}$	0.0011	$\begin{aligned} & 0 \cdot 192 \\ & 0 \cdot 1914 \end{aligned}$	$0 \cdot 0011$	$\begin{aligned} & 0.090 \\ & 0.090 \end{aligned}$	$(\mathrm{fixed} z)$	
	O_{VI}	$\begin{aligned} & 0 \cdot 182 \\ & 0 \cdot 1860 \end{aligned}$	$0 \cdot 0030$	$\begin{aligned} & 0 \cdot 183 \\ & 0 \cdot 1898 \end{aligned}$	$0 \cdot 0031$	$\begin{aligned} & 0.309 \\ & 0.316 \underline{2} \end{aligned}$	$0 \cdot 0038$	
	OVII	$\begin{aligned} & 0 \cdot 283 \\ & 0 \cdot 2807 \end{aligned}$	0.0028	$\begin{aligned} & 0 \cdot 297 \\ & 0 \cdot 2849 \end{aligned}$	$0 \cdot 0029$	$\begin{aligned} & 0.019 \\ & 0.0065 \end{aligned}$	$0 \cdot 0045$	
	OVIII	$\begin{aligned} & 0 \cdot 260 \\ & 0 \cdot 2736 \end{aligned}$	$0 \cdot 0029$	$\begin{aligned} & 0.050 \\ & 0.0638 \end{aligned}$	$0 \cdot 0030$	$\begin{aligned} & 0 \cdot 634 \\ & 0 \cdot 6450 \end{aligned}$	$0 \cdot 0042$	

Table 4. Coordinates of the refined tourmaline structure

Equi-point	Atom	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	B
$3 a$	Na	0	-	0	-	0.8576	0.0010	0.688
	$\mathrm{O}_{1}=\mathrm{OH}_{\mathrm{I}}$	0	-	0	-	0.3117	$0 \cdot 0022$	-0.678
$9 b$	$\mathrm{O}_{2}=\mathrm{O}_{\mathrm{V}}$	0.1218	0.0010	$0 \cdot 0609$	0.0005	$0 \cdot 6113$	0.0013	0.378
	$\mathrm{O}_{4}=\mathrm{O}_{\mathrm{II}}$	$0 \cdot 1870$	0.0010	0.0935	0.0005	0.0176	$0 \cdot 0014$	0.526
	B	0.2206	0.0015	$0 \cdot 1103$	0.0008	$0 \cdot 6362$	0.0020	-0.229
	$\mathrm{Mg}=\mathrm{Li}, \mathrm{Al}$	0.0635	0.0005	$0 \cdot 1270$	0.0005	$0 \cdot 4618$	0.0007	$0 \cdot 327$
	$\mathrm{O}_{5}=\mathrm{O}_{\text {III }}$	0.0906	0.0005	$0 \cdot 1812$	0.0010	$0 \cdot 0012$	0.0012	-0.040
	$\mathrm{O}_{3}=\mathrm{OH}_{\text {II }}$	$0 \cdot 1340$	0.0005	$0 \cdot 2680$	0.0010	0.5755	0.0014	0.548
$18 c$	Si	$0 \cdot 1898$	0.0003	$0 \cdot 1922$	0.0003	0.0900	-	0.201
	Al	0.2615	0.0003	0.2976	0.0003	0.4762	0.0006	0.167
	$\mathrm{O}_{7}=\mathrm{O}_{\mathrm{I}}$	0.2851	$0 \cdot 0006$	0.2844	0.0007	0.0090	0.0010	$0 \cdot 301$
	$\mathrm{O}_{6}=\mathrm{O}_{\text {IV }}$	$0 \cdot 1866$	0.0007	0.1952	0.0006	0.3111	0.0009	0.178 0.694
	$\mathrm{O}_{8}=\mathrm{OVI}^{\text {V }}$	$0 \cdot 2698$	0.0007	$0 \cdot 2085$	0.0007	$0 \cdot 6455$	0.0011	$0 \cdot 694$

Although the analysis of the de Kalb tourmaline provides about $3 \mathrm{Mg}, 3 \mathrm{~B}$ and 6 Al atoms, Belov's structure requires ($3 \mathrm{Al}+3 \mathrm{~B}$) and 6 Mg . Accordingly, as much Mg as possible was placed in the octahedra, the remainder being made up by Al. The atoms of the cell, noted previously, were accordingly distributed as follows:

The additional $\mathrm{O}_{0.61}+\mathrm{F}_{0.47}$ indicated by the analysis was necessarily ignored.

For the purposes of the refinement, the atomic scattering factor for each atom site was computed from the appropriate average of the half-ionized atoms in that site according to the distribution in the formula just given. Isotropic temperature factors appropriate to the sites ($B_{\mathrm{Si}}=B_{\mathrm{Al}}=B_{\mathrm{Mg}}=0 \cdot 2 ; B_{\mathrm{O}}=$ $0 \cdot 4 ; B_{\mathrm{Na}}=0.5$) were applied, and were fixed during the refinement of coordinates and scale factors. The

Fig. 1. Projection of the maxima of $\varrho(x y z)$ on (0001) of the Fig. 1. Projection of the maxit (Contour interval $5 \mathrm{e} . \AA^{-3}$.)

Fig. 2. Interpretation of Fig. 1. (a) The lower layer of the structure comprising a ring of six rather regular Si tetrahedra.
(b) The upper layer of the structure chiefly consisting of octahedra. The central three larger octahedra contain Mg. The six smaller peripheral octahedra contain Al. The small circles are B atoms bonded along the broken lines to the corners of octahedra. The lower right octahedron is pierced by a 3_{1} screw axis to provide correlation with Fig. 2(c).
(c) The manner in which the various octahedral layers of the structure are joined to each other. The specific octahedron mentioned in the legend of Fig. 2(b) is seen here to share an edge with its 3_{1} screw equivalent below it. Other features of the structure are omitted to focus attention on the nature of the bonding between these octahedra.
\qquad

(a)

(b)

(c)
least-squares refinement substantially converged after 7 cycles. The initial and final results are given in Table 3. For the final structure, $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ has the high value of 27.9%, so the structure can hardly be correct.

To study the state of the structure at this point, a three-dimensional difference synthesis, $\Delta \varrho(x y z)$, was computed and then plotted in sections parallel to (0001). These maps were characterized by a random topography having maximum heights and depths in the neighborhood of $2 \mathrm{e} . \AA^{-2}$. Most of the atom locations fell on moderate gradients. The site for $\mathrm{B}+\mathrm{Al}$, however, fell at the location of a conspicuous minimum with a $\Delta \varrho$ of 9 e. \AA^{-2}. This negative anomaly was near two maxima on symmetry planes, one having the modest height of $2 \mathrm{e} . \AA^{-2}$, the other of height $13 \mathrm{e} . \AA^{-2}$, making it the most conspicuous feature on any of the maps. If the B and Al atoms of the $\mathrm{B}+\mathrm{Al}$ site are redistributed to the locations of these positive anomalies, the result is a structure which bears a resemblance to the Buerger and Ito structures (except that the Al and Mg are interchanged and that the oxygen atom on the 3 -fold axis is missing). Without this redistribution the Belov structure cannot be refined, and must be considered as incorrect.

Characteristics of the tourmaline structure

The coordinates of the final tourmaline structure are given in Table 4. To illustrate the relations between atoms in this important structure, a three-dimensional Fourier synthesis was prepared based upon structure factors computed from a near-final set of coordinates. This has the characteristics of a well refined structure, with well rounded contours and slightly undulating, random background. The sections of this synthesis containing the peak values of $\varrho(x y z)$ are shown projected on (0001) in Fig. 1. In Figs. 2(a), (b), and (c) this projection is interpreted. Fig. 2(a) shows the hexagonal ring of Si tetrahedra lying at the lowest level of the structure. This is seen to have a fairly regular hexagonal form (a feature which the original Ito structure possessed). Fig. 2(b) shows the next higher layer of the structure, a sheet of octahedra. The central three octahedra are occupied by Mg , an identification confirmed by their larger size. The pairs of octahedra on the edges are occupied by Al, an identification confirmed by their smaller size. Thus in spite of the great flexibility in the replacement of the metals of the octahedral sites in tourmaline, the Mg and Al atoms appear to play distinct roles. Three B atoms help bind together the octahedral layer.

A 3_{1} screw is shown piercing the lower right Al octahedron of Fig. 2(b). (Since all Al's are equivalent, a corresponding 3_{1} or 3_{2} screw pierces each Al octahedron.) This particular octahedron and its screw symbol are repeated in Fig. 2(c), an illustration which is intended to show how layers such as shown in Fig. 2(b) are linked in depth. For clarity, Fig. 2(c)
shows only one Al octahedron and its 3_{1} screw equivalent at a level $\frac{1}{3}$ lower; each pair of screw-equivalent Al octahedra share a common edge. If the third Al octahedron related by the 3_{1} screw in Fig. 2(c) were shown, it would complete a set of three Al octahedra related by and spiraling down the 3_{1} axis.

The alkali atom fits in the central void of the ring of tetrahedra in Fig. 2(a), just below the level of the base of the ring. Directly above the alkali, and in the center of Fig. 2(b), is the hydroxyl, O_{1}, and just below the alkali atom are the three O_{2} 's in the triangle immediately surrounding that hydroxyl, also in Fig. $2(b)$.

Fig. 3. Some of the symmetry elements in a hexagonal cell of $R 3 m$ and some of the equivalont positions and their coordinates which are helpful in understanding the atom locations used in Table 5. The asymmetric unit can be taken as either: (1) the content of the trigonal prism of height $c / 3$ and whose sides are three mirrors, or (2) the content of the four-sided prism of height c whose sides are two mirrors plus two perpendicular planes dropped to these from the screw axis. This asymmetric unit is utilized in this paper.

The structure can be studied in more detail with the aid of the interatomic distances shown in Table 5. The coordinates of certain equivalent points of space group $R 3 m$ are shown in Fig. 3 as an aid to the interpretation of the entries in Table 5.

The $\mathrm{Na}(\mathrm{Ca})$ atom has ten near neighbors. The closest are the three O_{2} 's at $2 \cdot 46 \AA$, which is consistent with the sum of the radii of calcium and oxygen ions. Curiously, the next six nearest neighbors are the six saturated oxygen atoms of the tetrahedral ring, namely three O_{5} at $2.73 \AA$ and three O_{4} at $2.83 \AA$. The unsaturated hydroxyl O_{1}, is at the comparatively great distance of $3 \cdot 29 \AA$.

In the tetrahedral ring, the Si atom is at equal distances, 1.603 and $1 \cdot 606 \AA$, from two oxygens (O_{6} and O_{7}) which are not near to Na , but at greater though almost equal distances, 1.635 and $1.639 \AA$, from the oxygens (O_{5} and O_{4}) which are near Na . This difference, namely $0.03 \AA$, in $\mathrm{Si}-\mathrm{O}$ distances in the same tetrahedron suggests weak bonds from Na to O_{5} and O_{4} of the ring of silica tetrahedra, and correspondingly weakened $\mathrm{Si}-\mathrm{O}$ bonds.

Table 5. Important interatomic distances in the refined tourmaline structure
Silicon coordination polyhedron

			s	$\sigma(s)$	
Si	x, y, z	O_{4}	x, y, z	$\mathrm{l} \cdot 639 \AA$	$0.003 \AA$
		O_{5}	x, y, z	$1 \cdot 635$	0.003
		O_{6}	x, y, z	$\mathrm{l} \cdot 603$	0.007
		O_{7}	x, y, z	$1 \cdot 606$	0.009
O_{6}	x, y, z	O_{4}	x, y, z	2.675	0.008
		O_{5}	x, y, z	2.662	0.007
		O_{7}	x, y, z	2.654	0.010
O_{4}	x, y, z	O_{5}	x, y, z	2.547	0.006
		O_{7}	x, y, z	2.638	0.009
O_{5}	x, y, z	O_{7}	x, y, z	$2 \cdot 689$	0.009

Boron triangle

B	x, y, z		O_{2}	x, y, z	$\mathrm{l} \cdot 375 \AA$	$0.010 \AA$
		(2)	O_{8}	x, y, z	1.358	0.010
O_{8}	x, y, z	(2)	O_{2}	x, y, z	2.369	0.010
			$\mathrm{O}_{8}{ }^{\prime}$	$x, x-y, z$	2.348	0.021

Sodium coordination polyhedron

Na	x, y, z	(3)	O_{2}	x, y, z	$2 \cdot 452 \AA$	$0.005 \AA$
Na	$x, y, z-1$		O_{1}	x, y, z	$3 \cdot 288$	0.007
		(3)	O_{4}	x, y, z	2.831	0.033
		(3)	O_{5}	x, y, z	2.711	0.003

The obvious difference in size between the central and peripheral octahedra of Fig. 2(b) is borne out by their computed metal-oxygen distances. The central octahedra have about $2.05 \AA$, which compares reasonably well with the Mg octahedra in enstatite ($2 \cdot 19 \AA$) and protoenstatite ($2 \cdot 12 \AA$). The mean metal-oxygen distances in the peripheral octahedra are $1.93 \AA$, in exact agreement with the mean for the Al octahedra of andalusite (Burnham \& Buerger, 1961).

The edges shared between Al octahedra are $2.43 \AA$, which compares well with $2 \cdot 47 \AA$, the shared edges in andalusite. The edge of the Mg octahedron shared with another Mg octahedron $\left(\mathrm{O}_{1} \mathrm{O}_{2}\right)$ is shortened to $2.75 \AA$; the edge shared with the Al octahedron $\left(\mathrm{O}_{3} \mathrm{O}_{6}\right)$ is considerably shorter, $2 \cdot 58 \AA$. This feature is expectable because of the larger charge on the Al ion and its smaller radius.

This investigation was supported by a grant from the National Science Foundation. The computations
were carried out on the IBM 709 at the M.I.T. Computation Center.

References

Belov, N. V. \& Belova, E. N. (1949). Dokl. Akad. Nauk S.S.S.R. 69, 185. (Abstracted in Phys. Abstr. 53, (1950) item 3545).

Belov, N. V. \& Belova, E. N. (1950). Dokl. Akad. Nauk S.S.S.R.75, 807.

Buerger, M. J. (1960). Crystal-structure Analysis, p. 118. New York: Wiley.
Burnham, C. W. \& Buerger, M. J. (1961). Z. Kristallogr. 115, 269.
Busing, W. R. \& Levy, H. A. (1959). A crystallographic least-squares refinement program for the IBM 704. Oak Ridge, Tennessee. Oak Ridge National Laboratories.
Donnay, Gabrielle \& Buerger, M. J. (1950). Acta Cryst. 3, 379.
Donnay, Gabrielle, Wyart, J. \& Sabatier, G. (1959). Z. Kristallogr. 112, 161.

Hamburger, Gabrielle E. \& Buerger, M. J. (1948). Amer. Min. 33, 532.
Ito, T. \& Sadanaga, R. (1951). Acta Cryst. 4, 385.

Résolution des Structures Cristallines: Méthode des »Domaines Interdits«

Par Gérard von Eller
Laboratoire de Rayons X de l'IRChA, 12, quai Henri IV, Paris IVe, France

(Reçu le 19 juillet 1961)
The notion of inequality between structure factors has been extended. This leads to associate a Fourier series with each Karle-Hauptman matrix U. The amplitudes and phases of this real positive series, $\rho(\mathbf{x})$, (where \mathbf{x} is the point of the unit cell) are the moduli and arguments of the elements of the matrix U^{-1} to which are attached the cristallographic indices of the corresponding elements of \mathbf{U}. Wherever $\mathcal{f}(\mathbf{x})$ is greater than l / n_{j} (n_{j} being the relative weight of the j atom), there is no atom of the j kind present.

1. Introduction

L'examen des déterminants de Karle \& Hauptman (1950), ou, de façon équivalente, de l'espace des facteurs de structure (v. Eller, 1955, 1960, 1961), permet d'éliminer les combinaisons de phases $\alpha(\mathbf{h})$ incompatibles avec une répartition de densité électronique positive dans la maille cristalline. De la sorte toutes autres informations, portant par exemple sur la nature des atomes, leur nombre ou sur des données de configuration moléculaire, qui permettraient d'accélérer considérablement l'amorce de la résolution de la structure, restent malheureusement inemployées.

Il a donc paru intéressant de rechercher une voie qui permette de les utiliser. Elle a été trouvée dans une étude plus approfondie des formes hermitiques de Karle \& Hauptman ainsi que dans l'interprétation de leurs transformées de Fourier dans l'espace cristallin, et impose l'optique suivante:

Pour une inégalité insatisfaite (déterminant de Karle \& Hauptman négatif ou espace des facteurs de structure inconstructible), il n'y a aucune place dans la maille pour des atomes.

Pour une inégalité 'inconfortablement' satisfaite, il n'y a pas de place pour des atomes dans certains domaines de la maille.

Ces 'domaines interdits' peuvent être déterminés pour chaque application de phases aux $U(\mathbf{h})$ de toute matrice de Karle \& Hauptman. Il devient alors possible d'éliminer celles de ces applications qui sont stériquement incompatibles avec les renseignements que l'on possède sur la configuration du motif cristallin.

2. Théorie

Soit dans une maille cristalline, sans symétrie pour plus de généralité, déformée suivant un cube de volume un pour simplifier le traitement mathéma-

